Quiz 4; Tuesday, 2/13/2018
Section \#211; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE If we want to show that the statements S_{n} are true for all $n \geq 0$, we need to prove the base case $n=1$.

Solution: The base case is $n=0$.
2. TRUE False When $A \subset B$, the conditional probability $P(A \mid B)$ can be expressed as the fraction $\frac{P(A)}{P(B)}$ (given all involved quantities are well-defined).

Solution: Since $A \subset B$, we know that $A \cap B=A$ and hence

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)} .
$$

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (4 points) Prove that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \geq 1$.

Solution: First we prove the base case $n=1$. Then the LHS is 1 and the RHS is $\frac{1(1+1)}{2}=1=$ LHS as required.
Now assume the inductive hypothesis IH: $1+2+\cdots+n=\frac{n(n+1)}{2}$ for some $n \geq 1$.
Now we want to prove that $1+2+\cdots+(n+1)=\frac{(n+1)(n+2)}{2}$. We have that the left hand side is
$L H S=(1+2+\cdots+n)+(n+1) \stackrel{I H}{=} \frac{n(n+1)}{2}+n+1=\frac{n^{2}+n+2 n+2}{2}=\frac{n^{2}+3 n+2}{2}$.
And

$$
R H S=\frac{(n+1)(n+2)}{2}=\frac{n^{2}+3 n+2}{2}=L H S
$$

Finally, by MMI, we know that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \geq 1$.
(b) (3 points) What is the probability that when picking a hand of 5 cards out of a deck of 52 cards, you pick at least one king?

Solution: We can solve this via complementary probability. We have that $P(\geq 1 K)=1-P(<1 K)=1-P(0 K)$ and $P(0 K)=\frac{\binom{48}{5} \text {. Thus, we have that }}{\binom{52}{5}}$.

$$
P(\geq 1 \text { King })=1-\frac{\binom{48}{5}}{\binom{52}{5}}
$$

(c) (3 points) What is the probability that when picking a hand of 5 cards out of a deck of 52 cards, you pick exactly three kings given that you have at least one king?

Solution: We can calculate the probability of picking three kings. The number of ways of picking three kings is $\binom{4}{3} \cdot\binom{48}{2}$ and the total number of ways is $\binom{52}{5}$. Thus, the conditional probability is

$$
\begin{gathered}
P(3 K \mid \geq 1 K)=\frac{P(3 K \cap \geq 1 K)}{P(\geq 1 K)}=\frac{P(3 K)}{P(\geq 1 K)}=\frac{\frac{\binom{4}{3}}{\binom{48}{2}}}{1-\frac{\binom{48}{5}}{\binom{52}{5}}} \\
=\frac{\binom{4}{3}\binom{48}{2}}{\binom{52}{5}-\binom{48}{5}} .
\end{gathered}
$$

